Bioconversion of agricultural residues and bio-based waste streams

DST Science-meets-Industry Workshop: Organic waste
26-27 November 2014

Brett Pletschke
Rhodes University
Biobased economy, Bioeconomy, Biotechonomy, Biorefinery: producing VAPs

Sustainable Bioeconomy Roadmap

Biomass
Distiller Grains
Crude Glycerol
Biofuel Industries
Lignin
Bagasse
Protein Rich Meals
Coproducts
Chemicals & Polymers
Composites
Carbon Materials

Technical applications of extremozymes in industrial processes

Skander Elleuche, Carola Schröder, Kerstin Sahm, Garabed Antranikian
SECOND GENERATION BIOFUEL PRODUCTION

- Agricultural residues
- Bagasse
- Hardwoods - Eucalyptus
- Softwoods - Spruce

Pretreatment

Hydrolytic enzymes
• Glucose
• Mannose
• Galactose
• Xylose
• Arabinose

Fermentation
Problem: Bottleneck in biomass conversion

- Current cost of industrial enzymes = R2 per liter

“The bottleneck in lignocellulose bioconversion lies in the enzymes required for hydrolysis, we need better enzymes and a better understanding of how they synergise most effectively”
Enzyme discovery, synergy and immobilisation are the answer: e.g. cellulases
Where are the enzymes?

- **Microbes:** Fungal cellulases and bacterial hemicellulases – we use a selective medium with cellulose, hemicellulose

 Aerobic fungi
 - *Trichoderma reesei*
 - *Aspergillus niger*

 Anaerobic bacteria (one step)
 - *Clostridium thermocellum*
 - *Clostridium cellulovorans*
 - *Clostridium cellulolyticum*
Synergistic associations between *Clostridium cellulovorans* enzymes XynA, ManA and EngE against sugarcane bagasse

Natasha Beukes a, Helen Chan b, Roy H. Doi b, Brett I. Pletschke a, *

a Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
b Section of Molecular and Cellular Biology, University of California, Davis, 95616 CA, USA

Received 17 October 2007; received in revised form 21 December 2007; accepted 16 January 2008

NH₄OH (0.114 M/g SCB/36 h/ 70°C) and 75% XynA:

25% ManA effectively increased SCB digestibility 13.1 fold.

Highest activity and degree of synergy (2.85).

Fruit Production in S.A.

S.A. produces large quantities of fruit wastes (pomace) and waste water from the fruit juicing and canning industry.

- Apples
- Citrus

Juicing and canning
Table 1: Production volumes for various fruit crops in South Africa, as well as volumes processed (DAFF, 2013). Terminology in brackets: Processed = canning and/or juicing; Dried = prepared as dried fruit; and Pressed = pressed for wine making

<table>
<thead>
<tr>
<th>Fruit crop</th>
<th>Total production in tonnes (2011/2012)</th>
<th>Volume processed in tonnes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus (oranges, lemons, limes, grapefruit and naartjies)</td>
<td>2 102 618</td>
<td>441 899</td>
</tr>
<tr>
<td>Grapes</td>
<td>1 839 030</td>
<td>1 649 (processed), 151 628 (dried) 1 413 533 (pressed)</td>
</tr>
<tr>
<td>Apples</td>
<td>790 636</td>
<td>244 469 (processed), 1 110 (dried)</td>
</tr>
<tr>
<td>Bananas</td>
<td>371 385</td>
<td>Not indicated</td>
</tr>
<tr>
<td>Pears</td>
<td>346 642</td>
<td>120 811 (processed), 9 872 (dried)</td>
</tr>
<tr>
<td>Peaches</td>
<td>190 531</td>
<td>125 706 (processed), 8 994 (dried)</td>
</tr>
<tr>
<td>Pineapples</td>
<td>108 697</td>
<td>81 753</td>
</tr>
<tr>
<td>Watermelons and melons</td>
<td>93 277</td>
<td>Not indicated</td>
</tr>
<tr>
<td>Avocados</td>
<td>87 895</td>
<td>Not indicated</td>
</tr>
<tr>
<td>Apricots</td>
<td>66 762</td>
<td>48 792 (processed), 8 725 (dried)</td>
</tr>
<tr>
<td>Mangoes</td>
<td>65 439</td>
<td>Approx 50 000*</td>
</tr>
<tr>
<td>Plums</td>
<td>60 925</td>
<td>1 712</td>
</tr>
<tr>
<td>Guavas</td>
<td>23 699</td>
<td>20 896</td>
</tr>
<tr>
<td>Papayas</td>
<td>12 565</td>
<td>Not indicated</td>
</tr>
<tr>
<td>Litchis</td>
<td>7 782</td>
<td>Not indicated</td>
</tr>
<tr>
<td>Strawberries</td>
<td>5 543</td>
<td>2 724</td>
</tr>
<tr>
<td>Other berries</td>
<td>5 073</td>
<td>3 914</td>
</tr>
<tr>
<td>Prunes</td>
<td>3 426</td>
<td>Not indicated</td>
</tr>
<tr>
<td>Figs</td>
<td>1 925</td>
<td>448</td>
</tr>
<tr>
<td>Pomegranates**</td>
<td>1 324</td>
<td>883</td>
</tr>
<tr>
<td>Cherries***</td>
<td>775</td>
<td>83</td>
</tr>
<tr>
<td>Granadillas</td>
<td>484</td>
<td>Not indicated</td>
</tr>
<tr>
<td>Quinces</td>
<td>208</td>
<td>Not indicated</td>
</tr>
</tbody>
</table>

*Data obtained from South African Mango growers’ association (www.mango.co.za)
**Data obtained from Pomegranate Association of South Africa (www.sapomegranate.co.za)
***Data obtained from South Africa cherry growers’ association (www.cherries.co.za)
Enzyme production with *Aspergillus*

DNA

recombinant *A. niger*

Fruit waste streams
Identification of target enzymes and strains

- *A. niger* strains had previously been constructed in-house and are known to produce high levels of extracellular enzyme activity.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Foreign gene</th>
<th>Activity</th>
<th>Substrate*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. niger D15[pGT1]</td>
<td>none</td>
<td></td>
<td>All</td>
</tr>
<tr>
<td>A. niger D15[eg2]</td>
<td>Trichoderma reesei egII</td>
<td>Endoglucanase</td>
<td>Lichenan</td>
</tr>
<tr>
<td>A. niger D15[man1]</td>
<td>Aspergillus aculeatus man1</td>
<td>Endomannanase</td>
<td>Locust Bean Gum</td>
</tr>
<tr>
<td>A. niger D15[xynB]</td>
<td>Trichoderma reesei xynB</td>
<td>Endoxylanase</td>
<td>Beechwood xylan</td>
</tr>
</tbody>
</table>

* Lichenan (Sigma); Locust bean gum (Sigma). Birchwood xylan has been discontinued and therefore beechwood xylan (Fluka) had to be used as substitute.
Integrated approach for remediation and beneficiation of fruit wastestreams (ReBenFruWaste). Wastestreams can be divided in sugar-rich streams for (1) ethanol production and cellulosic/phenolics/lipid rich streams for (2) enzyme production by *Aspergillus* strains. Enzymes can be used for bioconversion of (3) lignocellulosic streams or the (4) production of value-added fine chemicals. The process can also include (5) biorefinery waste streams of future bioeconomies.
Cellulase and hemicellulase immobilisation on to Mag-CLEAs (magnetic cross linked enzyme aggregates)

Abhishek Bhattacharya
Expanding the bioeconomy value chain beyond biofuels

Produce key VAPs: xylose, mannitol, xylitol, chitin-oligosaccharides (CHOS), xylo-oligosaccharides (XOS), enzymes
Acknowledgements

• Emile van Zyl (US),
• Shaunita Rose (US)
• Marilize Le Roes-Hill (CPUT)
• Nuraan Khan (CPUT),
• Gaya Terblanche (CPUT)
• Susan van Dyk (RU/UBC)
• Natasha Beukes
• WRC, NRF, Rhodes University
“Fruit waste streams in South Africa and their potential role in developing a bio-economy”
SAJS 2015 July issue